

NOMCOR

A revolution in real time.

IEC 61850 REPRESENTATION OF SWITCHGEAR, SWITCH CONTROLLER AND INTERLOCKING FUNCTIONS FOR REAL-TIME SIMULATIONS

Outline

Introduction
Switchgear Modeling in IEC 61850
Development of the Simulation Model
Test Setup
Results and Discussion

Introduction

- □ IEC 61850 has become the preferred standard for substation automation systems (SAS) around the world
- ☐ **Testing and validating** of control systems in a substation such as high voltage **switchgear controls** can be challenging due to the unavailability of an accurate **replica test system**
- ☐ Control systems can be tested in a virtual environment by modelling them inside a **real-time simulator**

Switchgear Control

- ☐ **High voltage switchgear** in an electrical substation operates in response to either a **trip** or a **switch** (opening and closing) command
- ☐ Typically, only protection and control intelligent electronic devices (IEDs) at **bay level** can trip circuit breakers
- □ A circuit breaker can either be switched locally with manual control or by a command from bay, station and/or remote levels
- ☐ IEC 61850 defines data models for representing switchgear and their associated controls
- ☐ These data models can be read and controlled by MMS communication protocol

Control Models

- ☐ As different applications require different control behaviours, IEC 61850 defines
 - **four** control models:
 - ☐ Direct control with normal security
 - ☐ SBO (select before operate) control with normal security
 - ☐ Direct control with enhanced security
 - ☐ SBO control with enhanced security

Originator Category (orCat)

☐ Originator category (orCat) indicates who/what requested the change of state of a controllable value

Values for orCat	Explanation
not-supported	That value shall not be used
bay-control	Control operation issued from an operator using a client located at bay level
station-control	Control operation issued from an operator using a client located at station level
remote-control	Control operation from a remote operator outside the substation (for example network control center)
automatic-bay	Control operation issued from an automatic function at bay level
automatic-station	Control operation issued from an automatic function at station level
automatic-remote	Control operation issued from a automatic function outside of the substation
maintenance	Control operation issued from a maintenance/service tool
process	Status change occurred without control action (for example external trip of a circuit breaker or failure inside the breaker)

Control Parameters

☐ An originator's right to possess the control authority for a particular switch depends on a **prescribed set** of control parameters

Control Parameter	Description (as per IEC 61850-7-4)			
XCBR/XSWI/CSWI.Loc	Shows the control behaviour of the logical node			
LLN0.MltLev	Shows if more than one source of control commands is accepted at a certain level at the same time			
CSWI.LocSta	Shows the switching authority at station level.			

Control Parameters & Control Authority

☐ LLN0.Mltlev = False

Control Parameters & Control Authority

☐ LLN0.Mltlev = True

Simulation Model

Initialization of Switch Objects

- ☐ All four control models are implemented with an additional "status only" option
- Control model type is chosen when LN instances are first created using the IED configuration tool
- ☐ Type of the switch (XCBR or XSWI) is also chosen at this point
- ☐ All three LN instances (XCBR/XSWI, CSWI, CILO) are created simultaneously and locally interlinked

lit LD CSWI_XCBR										
CSWI Entries										
Add	Inst	ctlModel	Туре		,	Del				
=	InClass="CSWI" inst="1"	sbo-with-normal-security	•	XSWI	•					
=	InClass="CSWI" inst="2"	status-only		XCBR	T	Ô				
■	InClass="CSWI" inst="3"	direct-with-normal-security sbo-with-normal-security		xswi	T	Ô				
■	InClass="CSWI" inst="4"	direct-with-enhanced-security		xswi	T	Ô				
₫	InClass="CSWI" inst="5"	sbo-with-enhanced-security		xswi	T	Ô				

Data Model Structure

☐ All related LN instances are grouped into a separate Logical Device (LD)

Test Setup

Test Setup

- ☐ A MMS client program (MMS Voyageur) available in RSCAD was used as the MMS client for testing
- ☐ Testing was carried out in **two phases**
- ☐ Firstly, **functional aspects** of the developed simulation model were tested to confirm its correct operation
- ☐ Under functional testing:
 - All eight scenarios were tested (as per 7-4 Annex B)
 - ☐ Tests were repeated for interlock checks
 - ☐ Tests were repeated for each control model
 - Operation was tested according to state machines

Test Setup

- ☐ Secondly, the model was used in a simulation of a substation to evaluate its performance under **realistic scenarios**
- ☐ Operation switch objects ware tested according to a **test plan** considering practical consideration in a SAS
- ☐ All switching operations during **functional testing** and **integrated testing** with the example substation exhibited expected performances

Results and Discussion

The simulation model presented enables:

- ☐ Producing a **testing environment** for real switch controllers (operators) in a SAS to be tested, individually as well as a group
- ☐ Testing and verification of the **electrical interlocks** in the SAS
- ☐ Interfacing switch objects in the simulation with **actual circuit breakers** via hardwired I/O connections of the simulator
- ☐ Integration of switchgear controls into the **coordinated operation** of the entire SAS, including both protection and control systems

Questions

